Evaluating Certification Authority Security

Dr. Stephen Kent Chief Scientist-Information Security

INTERNETWORKING
POWERED BY BBN

Presentation Outline

- CA security requirements
- Adversaries
- Threats
- Countermeasures
- Cryptographic Modules
- Summary

The CA Security Requirement

Establish and maintain an accurate binding between attributes and a public key in a certificate

Derived Security Requirements

- Protection of CA private keys
 - confidentiality in the face of a wide range of attacks
 - support for polyinstantiation
 - support for key recovery
- Validation of certificate issuance requests
 - user/organization identification
 - verification of certificate syntax against rules for a specific CA or RA (basic certificate fields and extensions)
- Validated certification revocation requests
- Timely CRL distribution*

^{*}requires use of a directory system, largely outside control of the CA

Typical CA System Components

Adversaries & Capabilities

Hackers

- motivated by recognition (not averse to detection)
- software-based attacks
- external access

Compromised employees

- motivated by retribution, greed, ... (averse to detection)
- internal access
- may employ software, hardware, physical attacks

Criminals

- motivated by greed (averse to detection)
- external or internal access (bribe employees, break in, ...)
- may employ software, hardware, physical attacks

Attacks Against CAs

- Passive and active wiretapping
 - user/RA path
 - RA/CA path
- Personnel compromise
- CA workstation attacks
 - OS penetration
 - CA software or database manipulation
- Crypto module attacks
 - simple physical tampering
 - module theft/swapping
 - close-in attacks (TEMPEST, temperature, timing analysis, differential fault analysis, ...)

Attack Points

Protecting CAs

- Physical security
- Personnel security
- Procedural security
- OS and application security
- Network security
- Crypto module security

Countermeasures

- Locks, sensors, guards, guns, dogs, ...
- Personnel background checks
- Audit trails
- Multi-party authorization
- Certificate syntax filtering against rules
- Operating system security
- Software configuration control
- Signed/encrypted RA-CA communication
- Firewalls
- Crypto module security

Crypto Module Security

- Potentially, a good crypto module can significantly reduce vulnerabilities due to personnel, procedural, physical, and computer security shortcomings
- Most crypto modules in use today do not go very far towards realizing this potential, and none are ideal
- Implementation options for crypto modules
 - software
 - generic crypto hardware (e.g., PC and smart cards)
 - hardware specialized for CA use

Software Crypto

Advantages

- low cost
- no hardware interface problems

Limitations

- vulnerable to CA key compromise via software or physical attacks on workstation
- poor key generation (no hardware RNG)
- poor performance
- poor audit trail security
- low entropy PINs, PIN exposure to workstation
- vulnerable to personnel (RA/CA) security compromise
- vulnerable to close-in monitoring attacks?

Generic Crypto

Advantages

- modest cost
- keys protected from compromise of workstation software or physical attacks against the workstation
- hardware RNG for key generation
- multi-party authorization possible with split-signing systems

Limitations

- poor support for CA key polyinstantiation & recovery
- low entropy PINs, PIN exposure to workstation
- vulnerable to close-in monitoring attacks
- no certificate syntax validation
- no builtin audit
- vulnerable to theft & device swapping attacks

Specialized Crypto

Advantages

- keys protected from compromise of workstation software or physical attacks against the workstation
- hardware RNG for key generation
- multi-party authorization via high entropy keys
- secure polyinstantiation/recovery for CA keys
- protection against close-in monitoring/tampering
- certificate syntax validation (RDB)
- secure audit

Limitations

- higher device cost
- Iimited certificate/CRL rule checking (in current devices)

CA Security Recommendations

- Establish high quality personnel, physical, and procedural security standards for CA operations
- Use a crypto module specialized for support of CA functions, with suitable provisions for CA key recovery, polyinstantiation, & multi-party authorization
- Employ a high assurance workstation for the CA
- Protect RA-CA communications with cryptography

Keys to the Right, Keys to the Left ...

Summary

- The fundamental security requirement for CAs is simple to state, but hard to achieve in the face of a wide range of attack scenarios
- Software crypto for CAs is highly vulnerable
- Hardware crypto can limit the range of attacks against CA keys, but generic crypto devices still leave CAs vulnerable to many attacks
- Specialized hardware crypto, designed for CA support, offers the greatest potential for high assurance CA operation, but it's not a complete solution
- Specialized crypto may be most important in highly distrubuted CA environments, where personnel, physical and procedural security is worst!